آشنایی با کامپیوتر کوانتومی
رایانه ی کوانتومی ماشینی است که از پدیدهها و قوانین مکانیک کوانتوم مانند برهم نهی (Superposition) و درهم تنیدگی (Entanglement) برای انجام محاسباتش بهره می گیرد. کامپیوترهای کوانتومی با کامپیوترهای فعلی که باترانزیستورها کار می کنند تفاوت اساسی دارند. ایده اصلی که در پس کامپیوترهای کوانتومی نهفته است این است که می توان از خواص و قوانین فیزیک کوانتوم برای ذخیرهسازی و انجام عملیات روی اطلاعات استفاده کرد. یک مدل تئوریک و انتزاعی از این ماشین ها، ماشین تورینگ کوانتومی (Quantum Turing Machine) است که کامپیوتر کوانتومی جهانی (Universal Quantum Computer) نیز نامیده می شود.
اگر چه محاسبات کوانتومی تازه در ابتدای راه قرار دارد، اما آزمایش هایی انجام شده که در طی آنها عملیات محاسبات کوانتومی روی تعداد بسیار کمی از کیوبیت ها (qubit) اجرا شده است. تحقیقات نظری و عملی در این زمینه ادامه دارد و بسیاری از موسسات دولتی و نظامی از تحقیقات در زمینه کامپیوترهای کوانتومی چه برای اهداف غیرنظامی و چه برای اهداف امنیتی (مثل تجزیه و تحلیل رمز، Cryptanalysis) حمایت می کنند. اگر کامپیوترهای کوانتومی در مقیاس بزرگ ساخته شوند، می توانند مسائل خاصی را با سرعت خیلی زیاد حل کنند (برای مثال الگوریتم شُور، Shor’s Algorithm). البته باید توجه داشت که توابعی که توسط کامپیوترهای کلاسیک محاسبه پذیر (Computable) نیستند، توسط کامپیوترهای کوانتومی نیز محاسبه پذیر نخواهند بود. این کامپیوترها نظریه Church–Turing را رد نمی کنند. کامپیوترهای کوانتومی برای ما تنها سرعت بیشتر را به ارمغان می آورند.
نقاط کوانتومی
اصول کامپیوترهای کوانتومی
در سال 1965 گوردون مور (Gordon Moore) اظهار کرد که توان کامپیوترها هر دو سال دو برابر خواهد شد. در تمام این سالها، تلاش عمده در جهت افزایش قدرت و سرعت عملیاتی در کنار کوچک سازی زیر ساخت ها و اجزای بنیادی بوده است. نظریه مور در دهههای 60 و 70 میلادی تقریبا درست بود. اما از ابتدای دهه 80 میلادی و با سرعت گرفتن این پیشرفتها، شبهات و پرسش هایی در محافل علمی مطرح شد که این کوچک سازیها تا کجا می توانند ادامه پیدا کنند؟ کوچک کردن ترازیستورها و مجتمع کردن آنها در فضای کمتر نمی تواند تا ابد ادامه داشته باشد زیرا در حدود ابعاد نانو متری اثرات کوانتومی از قبیل تونل زنی الکترونی بروز می کنند. گرچه همیشه تکنولوژی چندین گام از نظریه عقب است، بسیاری از دانشمندان در زمینههای مختلف به فکر رفع این مشکل تا زمان رشد فن آوری به حد مورد نظر افتادند. به این ترتیب بود که برای نخستین بار در سال 1982 «ریچارد فاینمن» استاد بزرگ فیزیک و برنده جایزه نوبل، پیشنهاد کرد که باید محاسبات را از دنیای دیجیتال وارد دنیای جدیدی به نام کوانتوم کرد که بسیار متفاوت از قبلی است و نه تنها مشکلات گذشته و محدودیتهای موجود را بر طرف می سازد، بلکه افقهای جدیدی را نیز پیش روی ما قرار می دهد. این پیشنهاد تا اوایل دهه 90 میلادی مورد توجه جدی قرار نگرفت تا سرانجام در سال 1994 «پیتر شور» از آزمایشگاه AT&T در آمریکا ، نخستین گام را برای محقق کردن این آرزو برداشت. بدین ترتیب ارتباط نوینی بین نظریه اطلاعات و مکانیک کوانتومی شروع به شکل گیری کرد که امروز آنرا محاسبات کوانتومی یا محاسبات نانو متری (Nano Computing) می نامیم. در واقع هدف محاسبات کوانتومی یافتن روشهایی برای طراحی مجدد اجزای شناخته شده محاسبات ( مانند گیتها و ترانزیستورها ) است به طوریکه بتوانند تحت اثرات کوانتومی، که در محدوده ابعاد نانو متری و کوچکتر بروز می کنند، کار کنند.
کامپیوتر تنها بخشی از دنیایی است که ما آنرا دنیای دیجیتالی می نامیم. پردازش ماشینی اطلاعات، در هر شکلی، بر مبنای دیجیتال و محاسبات کلاسیک انجام می شود. اما کمتر از یک دهه است که روش بهتر و قدرتمندتر دیگری برای پردازش اطلاعات پیش رویمان قرار گرفته که بر اساس مکانیک کوانتومی می باشد. این روش جدید با ویژگیهایی همراه است که آنرا از محاسبات کلاسیک بسیار متمایز می سازد. گرچه محاسبات دانشی است که اساس تولد آن در ریاضیات بود، اما کامپیوترها سیستم هایی فیزیکی هستند و فیزیک در آینده این دانش نقش تعیین کننده ای خواهد داشت. البته وجود تفاوت بین این دو به معنای حذف یکی و جایگزینی دیگری نیست. به قول «نیلس بور» گاهی ممکن است خلاف یک حقیقت انکار ناپذیر منجر به حقیقت انکار ناپذیر دیگری شود. بنابراین محاسبات کوانتومی را به عنوان یک زمینه و روش جدید و بسیار کارآمد مطرح می کنیم. وجود چند پدیده مهم که مختص فیزیک کوانتومی است، آنرا از دنیای کلاسیک جدا می سازد. این پدیده ها عبارتند از: بر هم نهی (Superposition)، تداخل (Interference) ، Entanglement، عدم جبرگرایی (Non Determinism)، نا جایگزیدگی (Non Locality) و تکثیر ناپذیری (No Cloning) . برای بررسی اثرات این پدیدهها در این روش جدید، لازم است که ابتدا واحد اطلاعات کوانتومی را معرفی کنیم.
هر سیستم محاسباتی دارای یک پایه اطلاعاتی است که نماینده کوچکترین میزان اطلاعات قابل نمایش، چه پردازش شده و چه خام است. در محاسبات کلاسیک این واحد ساختاری را بیت (bit) می نامیم که گزیده واژه «عدد دودویی» است زیرا می تواند تنها یکی از دو رقم مجاز صفر و یک را در خود نگه دارد. به عبارت دیگر هر یک از ارقام یاد شده در محاسبات کلاسیک، کوچکترین میزان اطلاعات قابل نمایش محسوب می شوند. پس سیستم هایی هم که برای این مدل وجود دارند باید بتوانند به نوعی این مفهوم را عرضه کنند. در محاسبات کوانتومی هم چنین پایه ای معرفی میشود که آنرا کیوبیت (qubit) یا بیت کوانتومی می نامیم.
توانایی و قدرت محاسبات کوانتومی
بین کامپیوترهای کلاسیک و کامپیوترهای کوانتومی نسل آینده تفاوت اساسی وجود دارد. یک کامپیوتر کلاسیک بر اساس قوانین فیزیک کلاسیک دستورات از پیش تعیین شده ای را اجرا میکند، اما یک کامپیوتر کوانتومی دستگاهی است که یک پدیده ی فیزیکی را بر اساس مکانیک کوانتومی به صورت منحصر به فردی در می آورد تا به صورت اساسی یک حالت جدید از پردازش اطلاعات را تشخیص دهد. در یک کامپیوتر معمولی اطلاعات به صورت یک سری بیت کد گذاری می شوند و این بیتها از طریق گیتهای منطقی بولین که سری هستند برای نتیجه ی نهایی دستکاری می شوند به طور مشابه یک کامپیوتر کوانتومی، کیوبیتها یا بیتهای کوانتومی را با اجرای یک از گیتهای کوانتومی دستکاری می کندو هر واحد انتقال بر روی یک تک کیوبیت یا یک جفت کیوبیت عمل می کند. با به کار بردن این کمیتهای متوالی یک کامپیوتر کوانتومی می تواند یک واحد انتقال پیچیده از طریق مجموعه ای از کیوبیتها در بعضی حالات ابتدایی ایجاد کند. در یک رایانه کوانتومی به جای استفاده از ترانزیستورها و مدارهای رایانه ای معمولی از اتمها و سایر ذرات ریز برای پردازش اطلاعات استفاده می شود. یک اتم می تواند به عنوان یک بیت حافظه در رایانه عمل کند و جابجایی اطلاعات از یک محل به محل دیگر نیز توسط نور امکان می پذیرد. کریس مونرو و همکارانش در دانشگاه میشیگان برای ذخیره اطلاعات با استفاده از حالت مغناطیسی اتم از یک اتم کادمیم به دام افتاده در میدان الکتریکی استفاده کردند. در این روش انرژی توسط یک لیزر به درون اتم پمپاژ شده و اتم وادار به گسیل فوتونی میشود که رونوشتی از اطلاعات اتم را در بر دارد و توسط آشکارساز قابل تشخیص است.